首页 » Big Data and AI » Database » 正文

企业数据库优化汇总

1、数据库设计优化

A. 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

B. 应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0

C. 并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

D. 索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

E. 应尽可能的避免更新索引数据列,因为索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新索引数据列,那么需要考虑是否应将该索引建为索引。

F. 尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

G. 尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

H. 尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

I. 避免频繁创建和删除临时表,以减少系统表资源的消耗。

J. 临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。

K. 在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

L. 如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

2、SQL语句优化

A. 应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

B. 应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10 union all select id from t where num=20

C. in 和 not in 也要慎用,否则会导致全表扫描,如:

select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3

D. 下面的查询也将导致全表扫描:

select id from t where name like ‘%abc%’

E. 如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num

F. 应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where num/2=100
应改为:
select id from t where num=100*2

G. 应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where substring(name,1,3)=’abc’
— name以abc开头的id, 应改为:
select id from t where name like ‘abc%’

select id from t where datediff(day,createdate,’2005-11-30′)=0–‘2005-11-30’
–生成的id 应改为:
select id from t where createdate>=’2005-11-30′ and createdate<’2005-12-1′

H. 不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

I. 不要写一些没有意义的查询,如需要生成一个空表结构:

select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(…)

J. 很多时候用 exists 代替 in 是一个好的选择:

select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)

K. 任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

L. 尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

M. 尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

N. 尽量避免大事务操作,提高系统并发能力。

O、当只要一行数据时使用LIMIT 1; 当你查询表的有些时候,你已经知道结果只会有一条结果,单因为你可能需要去fetch游标,或是你也许会去检查返回的记录数。在这种情况下,加上LIMIT 1 可以增加性能。这样一样, MySQL数据库引擎会在找到一条数据后停止搜索,而不是继续往后查找下一条符合记录的数据。

P、千万不要ORDER BY RAND();

Q、避免SELECT *;

R、使用 ENUM 而不是 VARCHAR ?

ENUM 类型是非常快和紧凑的。在实际上,其保存的是 TINYINT,但其外表上显示为字符串。这样一来,用这个字段来做一些选项列表变得相当的完美。
如果你有一个字段,比如“性别”,“国家”,“民族”,“状态”或“部门”,你知道这些字段的取值是有限而且固定的,那么,你应该使用 ENUM 而不是 VARCHAR。

S、把IP地址存成 UNSIGNED INT

很多程序员都会创建一个 VARCHAR(15) 字段来存放字符串形式的IP而不是整形的IP。如果你用整形来存放,只需要4个字节,并且你可以有定长的字段。而且,这会为你带来查询上的优势,尤其是当你需要使用这样的WHERE条件:IP between ip1 and ip2。我们必需要使用UNSIGNED INT,因为 IP地址会使用整个32位的无符号整形

T、其他:

  • 可通过开启慢查询日志来找出较慢的 SQL;
  • 不做列运算:SELECT id WHERE age + 1 = 10,任何对列的操作都将导致表扫描,它包括数据库教程函数、计算表达式等等,查询时要尽可能将操作移至等号右边;
  • SQL 语句尽可能简单:一条 SQL 只能在一个 CPU 运算;大语句拆小语句,减少锁时间;一条大 SQL 可以堵死整个库;
  • 不用SELECT *
  • OR改写成INOR的效率是 n 级别,IN的效率是 log(n) 级别,in 的个数建议控制在 200 以内;
  • 不用函数和触发器,在应用程序实现;
  • 避免%xxx式查询;
  • 少用JOIN
  • 使用同类型进行比较,比如用'123''123'比,123123比;
  • 尽量避免在WHERE子句中使用!= 或 <> 操作符,否则将引擎放弃使用索引而进行全表扫描;
  • 对于连续数值,使用BETWEEN不用INSELECT id FROM t WHERE num BETWEEN 1 AND 5
  • 列表数据不要拿全表,要使用LIMIT来分页,每页数量也不要太大。

3. 数据表优化

除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候 MySQL 单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量:

字段

  • 尽量使用TINYINTSMALLINTMEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED
  • VARCHAR的长度只分配真正需要的空间;
  • 使用枚举或整数代替字符串类型;
  • 尽量使用TIMESTAMP而非DATETIME
  • 单表不要有太多字段,建议在 20 以内;
  • 避免使用 NULL 字段,很难查询优化且占用额外索引空间;
  • 用整型来存 IP。

索引

  • 索引并不是越多越好,要根据查询有针对性的创建,考虑在WHEREORDER BY命令上涉及的列建立索引,可根据EXPLAIN来查看是否用了索引还是全表扫描;
  • 应尽量避免在WHERE子句中对字段进行NULL值判断,否则将导致引擎放弃使用索引而进行全表扫描;
  • 值分布很稀少的字段不适合建索引,例如 “性别” 这种只有两三个值的字段;
  • 字符字段只建前缀索引;
  • 字符字段最好不要做主键;
  • 不用外键,由程序保证约束;
  • 尽量不用UNIQUE,由程序保证约束;
  • 使用多列索引时主意顺序和查询条件保持一致,同时删除不必要的单列索引。

引擎

目前广泛使用的是 MyISAM 和 InnoDB 两种引擎:

 MyISAM 

MyISAM 引擎是 MySQL 5.1 及之前版本的默认引擎,它的特点是:

  • 不支持行锁,读取时对需要读到的所有表加锁,写入时则对表加排它锁;
  • 不支持事务;
  • 不支持外键;
  • 不支持崩溃后的安全恢复;
  • 在表有读取查询的同时,支持往表中插入新纪录;
  • 支持BLOBTEXT的前 500 个字符索引,支持全文索引;
  • 支持延迟更新索引,极大提升写入性能;
  • 对于不会进行修改的表,支持压缩表,极大减少磁盘空间占用。

InnoDB 

InnoDB 在 MySQL 5.5 后成为默认索引,它的特点是:

  • 支持行锁,采用 MVCC 来支持高并发;
  • 支持事务;
  • 支持外键;
  • 支持崩溃后的安全恢复;
  • 不支持全文索引。

总体来讲,MyISAM 适合SELECT密集型的表,而 InnoDB 适合INSERTUPDATE密集型的表。

系统调优参数

可以使用下面几个工具来做基准测试:

  • sysbench:一个模块化,跨平台以及多线程的性能测试工具;
  • iibench-mysql:基于 Java 的 MySQL/Percona/MariaDB 索引进行插入性能测试工具;
  • tpcc-mysql:Percona 开发的 TPC-C 测试工具。

具体的调优参数内容较多,具体可参考官方文档,这里介绍一些比较重要的参数:

  • back_log:back_log 值指出在 MySQL 暂时停止回答新请求之前的短时间内多少个请求可以被存在堆栈中。也就是说,如果 MySql 的连接数据达到 max_connections 时,新来的请求将会被存在堆栈中,以等待某一连接释放资源,该堆栈的数量即 back_log,如果等待连接的数量超过 back_log,将不被授予连接资源。可以从默认的 50 升至 500;
  • wait_timeout:数据库连接闲置时间,闲置连接会占用内存资源。可以从默认的 8 小时减到半小时;
  • max_user_connection: 最大连接数,默认为 0 无上限,最好设一个合理上限;
  • thread_concurrency:并发线程数,设为 CPU 核数的两倍;
  • skip_name_resolve:禁止对外部连接进行 DNS 解析,消除 DNS 解析时间,但需要所有远程主机用 IP 访问;
  • key_buffer_size:索引块的缓存大小,增加会提升索引处理速度,对 MyISAM 表性能影响最大。对于内存 4G 左右,可设为 256M 或 384M,通过查询show status like 'key_read%',保证key_reads / key_read_requests在 0.1% 以下最好;
  • innodb_buffer_pool_size:缓存数据块和索引块,对 InnoDB 表性能影响最大。通过查询show status like 'Innodb_buffer_pool_read%',保证 (Innodb_buffer_pool_read_requests – Innodb_buffer_pool_reads) / Innodb_buffer_pool_read_requests越高越好;
  • innodb_additional_mem_pool_size:InnoDB 存储引擎用来存放数据字典信息以及一些内部数据结构的内存空间大小,当数据库对象非常多的时候,适当调整该参数的大小以确保所有数据都能存放在内存中提高访问效率,当过小的时候,MySQL 会记录 Warning 信息到数据库的错误日志中,这时就需要该调整这个参数大小;
  • innodb_log_buffer_size:InnoDB 存储引擎的事务日志所使用的缓冲区,一般来说不建议超过 32MB;
  • query_cache_size:缓存 MySQL 中的 ResultSet,也就是一条 SQL 语句执行的结果集,所以仅仅只能针对 select 语句。当某个表的数据有任何任何变化,都会导致所有引用了该表的 select 语句在 Query Cache 中的缓存数据失效。所以,当我们的数据变化非常频繁的情况下,使用 Query Cache 可能会得不偿失。根据命中率(Qcache_hits/(Qcache_hits+Qcache_inserts)*100))进行调整,一般不建议太大,256MB 可能已经差不多了,大型的配置型静态数据可适当调大。
    可以通过命令show status like 'Qcache_%'查看目前系统 Query catch 使用大小;
  • read_buffer_size:MySql 读入缓冲区大小。对表进行顺序扫描的请求将分配一个读入缓冲区,MySql 会为它分配一段内存缓冲区。如果对表的顺序扫描请求非常频繁,可以通过增加该变量值以及内存缓冲区大小提高其性能;
  • sort_buffer_size:MySql 执行排序使用的缓冲大小。如果想要增加ORDER BY的速度,首先看是否可以让 MySQL 使用索引而不是额外的排序阶段。如果不能,可以尝试增加 sort_buffer_size 变量的大小;
  • read_rnd_buffer_size:MySql 的随机读缓冲区大小。当按任意顺序读取行时 (例如,按照排序顺序),将分配一个随机读缓存区。进行排序查询时,MySql 会首先扫描一遍该缓冲,以避免磁盘搜索,提高查询速度,如果需要排序大量数据,可适当调高该值。但 MySql 会为每个客户连接发放该缓冲空间,所以应尽量适当设置该值,以避免内存开销过大;
  • record_buffer:每个进行一个顺序扫描的线程为其扫描的每张表分配这个大小的一个缓冲区。如果你做很多顺序扫描,可能想要增加该值;
  • thread_cache_size:保存当前没有与连接关联但是准备为后面新的连接服务的线程,可以快速响应连接的线程请求而无需创建新的;
  • table_cache:类似于 thread_cache_size,但用来缓存表文件,对 InnoDB 效果不大,主要用于 MyISAM。
缓存

缓存可以发生在这些层次:

  • MySQL 内部:在系统调优参数介绍了相关设置;
  • 数据访问层:比如 MyBatis 针对 SQL 语句做缓存,而 Hibernate 可以精确到单个记录,这里缓存的对象主要是持久化对象Persistence Object
  • 应用服务层:这里可以通过编程手段对缓存做到更精准的控制和更多的实现策略,这里缓存的对象是数据传输对象Data Transfer Object
  • Web 层:针对 web 页面做缓存;
  • 浏览器客户端:用户端的缓存。

可以根据实际情况在一个层次或多个层次结合加入缓存。这里重点介绍下服务层的缓存实现,目前主要有两种方式:

  • 直写式(Write Through):在数据写入数据库后,同时更新缓存,维持数据库与缓存的一致性。这也是当前大多数应用缓存框架如 Spring Cache 的工作方式。这种实现非常简单,同步好,但效率一般;
  • 回写式(Write Back):当有数据要写入数据库时,只会更新缓存,然后异步批量的将缓存数据同步到数据库上。这种实现比较复杂,需要较多的应用逻辑,同时可能会产生数据库与缓存的不同步,但效率非常高。
表分区

MySQL 在 5.1 版引入的分区是一种简单的水平拆分,用户需要在建表的时候加上分区参数,对应用是透明的无需修改代码。

对用户来说,分区表是一个独立的逻辑表,但是底层由多个物理子表组成,实现分区的代码实际上是通过对一组底层表的对象封装,但对 SQL 层来说是一个完全封装底层的黑盒子。MySQL 实现分区的方式也意味着索引也是按照分区的子表定义,没有全局索引。

用户的 SQL 语句是需要针对分区表做优化,SQL 条件中要带上分区条件的列,从而使查询定位到少量的分区上,否则就会扫描全部分区,可以通过EXPLAIN PARTITIONS来查看某条 SQL 语句会落在那些分区上,从而进行 SQL 优化.

分区的好处是:

  • 可以让单表存储更多的数据;
  • 分区表的数据更容易维护,可以通过清楚整个分区批量删除大量数据,也可以增加新的分区来支持新插入的数据。另外,还可以对一个独立分区进行优化、检查、修复等操作;
  • 部分查询能够从查询条件确定只落在少数分区上,速度会很快;
  • 分区表的数据还可以分布在不同的物理设备上,从而搞笑利用多个硬件设备
  • 可以使用分区表赖避免某些特殊瓶颈,例如 InnoDB 单个索引的互斥访问、ext3 文件系统的 inode 锁竞争;
  • 可以备份和恢复单个分区。

分区的限制和缺点:

  • 一个表最多只能有 1024 个分区;
  • 如果分区字段中有主键或者唯一索引的列,那么所有主键列和唯一索引列都必须包含进来;
  • 分区表无法使用外键约束;
  • NULL 值会使分区过滤无效;
  • 所有分区必须使用相同的存储引擎。

分区的类型:

  • RANGE 分区:基于属于一个给定连续区间的列值,把多行分配给分区;
  • LIST 分区:类似于按 RANGE 分区,区别在于 LIST 分区是基于列值匹配一个离散值集合中的某个值来进行选择;
  • HASH 分区:基于用户定义的表达式的返回值来进行选择的分区,该表达式使用将要插入到表中的这些行的列值进行计算。这个函数可以包含 MySQL 中有效的、产生非负整数值的任何表达式;
  • KEY 分区:类似于按 HASH 分区,区别在于 KEY 分区只支持计算一列或多列,且 MySQL 服务器提供其自身的哈希函数。必须有一列或多列包含整数值。

分区适合的场景有:

  • 最适合的场景数据的时间序列性比较强,则可以按时间来分区,如下所示:
CREATE TABLE members (
   firstname VARCHAR(25NOT NULL,
   lastname VARCHAR(25NOT NULL,
   username VARCHAR(16NOT NULL,
   email VARCHAR(35),
   joined DATE NOT NULL
)
PARTITION BY RANGEYEAR(joined) ) (
   PARTITION p0 VALUES LESS THAN (1960),
   PARTITION p1 VALUES LESS THAN (1970),
   PARTITION p2 VALUES LESS THAN (1980),
   PARTITION p3 VALUES LESS THAN (1990),
   PARTITION p4 VALUES LESS THAN MAXVALUE
);
  • 查询时加上时间范围条件效率会非常高,同时对于不需要的历史数据能很容易的批量删除。

如果数据有明显的热点,而且除了这部分数据,其他数据很少被访问到,那么可以将热点数据单独放在一个分区,让这个分区的数据能够有机会都缓存在内存中,查询时只访问一个很小的分区表,能够有效使用索引和缓存。

另外 MySQL 有一种早期的简单的分区实现 – 合并表(merge table),限制较多且缺乏优化,不建议使用,应该用新的分区机制来替代。

垂直拆分

垂直分库是根据数据库里面的数据表的相关性进行拆分,比如:一个数据库里面既存在用户数据,又存在订单数据,那么垂直拆分可以把用户数据放到用户库、把订单数据放到订单库。垂直分表是对数据表进行垂直拆分的一种方式,常见的是把一个多字段的大表按常用字段和非常用字段进行拆分,每个表里面的数据记录数一般情况下是相同的,只是字段不一样,使用主键关联。

比如原始的用户表是:

垂直拆分后是:

垂直拆分的优点是:

  • 可以使得行数据变小,一个数据块 (Block) 就能存放更多的数据,在查询时就会减少 I/O 次数 (每次查询时读取的 Block 就少);
  • 可以达到最大化利用 Cache 的目的,具体在垂直拆分的时候可以将不常变的字段放一起,将经常改变的放一起;
  • 数据维护简单。

缺点是:

  • 主键出现冗余,需要管理冗余列;
  • 会引起表连接 JOIN 操作(增加 CPU 开销)可以通过在业务服务器上进行 join 来减少数据库压力;
  • 依然存在单表数据量过大的问题(需要水平拆分);
  • 事务处理复杂。
水平拆分

水平拆分是通过某种策略将数据分片来存储,分库内分表和分库两部分,每片数据会分散到不同的 MySQL 表或库,达到分布式的效果,能够支持非常大的数据量。前面的表分区本质上也是一种特殊的库内分表。

库内分表,仅仅是单纯的解决了单一表数据过大的问题,由于没有把表的数据分布到不同的机器上,因此对于减轻 MySQL 服务器的压力来说,并没有太大的作用,大家还是竞争同一个物理机上的 IO、CPU、网络,这个就要通过分库来解决。

前面垂直拆分的用户表如果进行水平拆分,结果是:

实际情况中往往会是垂直拆分和水平拆分的结合,即将 Users_A_M 和 Users_N_Z 再拆成 Users 和 UserExtras,这样一共四张表。

水平拆分的优点是:

  • 不存在单库大数据和高并发的性能瓶颈;
  • 应用端改造较少;
  • 提高了系统的稳定性和负载能力。

缺点是:

  • 分片事务一致性难以解决;
  • 跨节点 Join 性能差,逻辑复杂;
  • 数据多次扩展难度跟维护量极大。

分片原则

  • 能不分就不分,参考单表优化;
  • 分片数量尽量少,分片尽量均匀分布在多个数据结点上,因为一个查询 SQL 跨分片越多,则总体性能越差,虽然要好于所有数据在一个分片的结果,只在必要的时候进行扩容,增加分片数量;
  • 分片规则需要慎重选择做好提前规划,分片规则的选择,需要考虑数据的增长模式,数据的访问模式,分片关联性问题,以及分片扩容问题,最近的分片策略为范围分片,枚举分片,一致性 Hash 分片,这几种分片都有利于扩容;
  • 尽量不要在一个事务中的 SQL 跨越多个分片,分布式事务一直是个不好处理的问题;
  • 查询条件尽量优化,尽量避免 Select * 的方式,大量数据结果集下,会消耗大量带宽和 CPU 资源,查询尽量避免返回大量结果集,并且尽量为频繁使用的查询语句建立索引;
  • 通过数据冗余和表分区赖降低跨库 Join 的可能。

这里特别强调一下分片规则的选择问题,如果某个表的数据有明显的时间特征,比如订单、交易记录等,则他们通常比较合适用时间范围分片,因为具有时效性的数据,我们往往关注其近期的数据,查询条件中往往带有时间字段进行过滤,比较好的方案是,当前活跃的数据,采用跨度比较短的时间段进行分片,而历史性的数据,则采用比较长的跨度存储。

总体上来说,分片的选择是取决于最频繁的查询 SQL 的条件,因为不带任何 Where 语句的查询 SQL,会遍历所有的分片,性能相对最差,因此这种 SQL 越多,对系统的影响越大,所以我们要尽量避免这种 SQL 的产生。

解决方案

由于水平拆分牵涉的逻辑比较复杂,当前也有了不少比较成熟的解决方案。这些方案分为两大类:客户端架构和代理架构。

客户端架构

通过修改数据访问层,如 JDBC、Data Source、MyBatis,通过配置来管理多个数据源,直连数据库,并在模块内完成数据的分片整合,一般以 Jar 包的方式呈现。

这是一个客户端架构的例子:

可以看到分片的实现是和应用服务器在一起的,通过修改 Spring JDBC 层来实现。

客户端架构的优点是:

  • 应用直连数据库,降低外围系统依赖所带来的宕机风险;
  • 集成成本低,无需额外运维的组件。

缺点是:

  • 限于只能在数据库访问层上做文章,扩展性一般,对于比较复杂的系统可能会力不从心;
  • 将分片逻辑的压力放在应用服务器上,造成额外风险。
 

代理架构

通过独立的中间件来统一管理所有数据源和数据分片整合,后端数据库集群对前端应用程序透明,需要独立部署和运维代理组件。

这是一个代理架构的例子:

代理组件为了分流和防止单点,一般以集群形式存在,同时可能需要 Zookeeper 之类的服务组件来管理。

代理架构的优点是:

  • 能够处理非常复杂的需求,不受数据库访问层原来实现的限制,扩展性强;
  • 对于应用服务器透明且没有增加任何额外负载。

缺点是:

  • 需部署和运维独立的代理中间件,成本高;
  • 应用需经过代理来连接数据库,网络上多了一跳,性能有损失且有额外风险。
 
各方案比较

 

如此多的方案,如何进行选择?可以按以下思路来考虑:

  1. 确定是使用代理架构还是客户端架构。中小型规模或是比较简单的场景倾向于选择客户端架构,复杂场景或大规模系统倾向选择代理架构;
  2. 具体功能是否满足,比如需要跨节点ORDER BY,那么支持该功能的优先考虑;
  3. 不考虑一年内没有更新的产品,说明开发停滞,甚至无人维护和技术支持;
  4. 最好按大公司 -> 社区 -> 小公司 -> 个人这样的出品方顺序来选择;
  5. 选择口碑较好的,比如 github 星数、使用者数量质量和使用者反馈;
  6. 开源的优先,往往项目有特殊需求可能需要改动源代码。

按照上述思路,推荐以下选择:

  • 客户端架构:ShardingJDBC;
  • 代理架构:MyCat 或者 Atlas。
兼容 MySQL 且可水平扩展的数据库

目前也有一些开源数据库兼容 MySQL 协议,如:

  • TiDB
  • Cubrid

但其工业品质和 MySQL 尚有差距,且需要较大的运维投入,如果想将原始的 MySQL 迁移到可水平扩展的新数据库中,可以考虑一些云数据库:

  • 阿里云 PetaData
  • 阿里云 OceanBase
  • 腾讯云 DCDB

一些数据规范:

一、基础规范

(1)必须使用InnoDB存储引擎

解读:支持事务、行级锁、并发性能更好、CPU及内存缓存页优化使得资源利用率更高

(2)必须使用UTF8字符集

解读:万国码,无需转码,无乱码风险,节省空间

(3)数据表、数据字段必须加入中文注释

解读:N年后谁tm知道这个r1,r2,r3字段是干嘛的

(4)禁止使用存储过程、视图、触发器、Event

解读:高并发大数据的互联网业务,架构设计思路是“解放数据库CPU,将计算转移到服务层”,并发量大的情况下,这些功能很可能将数据库拖死,业务逻辑放到服务层具备更好的扩展性,能够轻易实现“增机器就加性能”。数据库擅长存储与索引,CPU计算还是上移吧

(5)禁止存储大文件或者大照片

解读:为何要让数据库做它不擅长的事情?大文件和照片存储在文件系统,数据库里存URI多好

二、命名规范

(6)只允许使用内网域名,而不是ip连接数据库

(7)线上环境、开发环境、测试环境数据库内网域名遵循命名规范

业务名称:xxx
线上环境:dj.xxx.db
开发环境:dj.xxx.rdb
测试环境:dj.xxx.tdb

从库在名称后加-s标识,备库在名称后加-ss标识

线上从库:dj.xxx-s.db
线上备库:dj.xxx-sss.db

(8)库名、表名、字段名:小写,下划线风格,不超过32个字符,必须见名知意,禁止拼音英文混用

(9)表名t_xxx,非唯一索引名idx_xxx,唯一索引名uniq_xxx

三、表设计规范

(10)单实例表数目必须小于500

(11)单表列数目必须小于30

(12)表必须有主键,例如自增主键

解读:

a)主键递增,数据行写入可以提高插入性能,可以避免page分裂,减少表碎片提升空间和内存的使用

b)主键要选择较短的数据类型, Innodb引擎普通索引都会保存主键的值,较短的数据类型可以有效的减少索引的磁盘空间,提高索引的缓存效率

c) 无主键的表删除,在row模式的主从架构,会导致备库夯住

(13)禁止使用外键约束,可以冗余外键,如果有外键完整性约束,需要应用程序控制

解读:外键会导致表与表之间耦合,update与delete操作都会涉及相关联的表,十分影响sql 的性能,甚至会造成死锁。高并发情况下容易造成数据库性能,大数据高并发业务场景数据库使用以性能优先

四、字段设计规范

(14)必须把字段定义为NOT NULL并且提供默认值

解读:

a)null的列使索引/索引统计/值比较都更加复杂,对MySQL来说更难优化

b)null 这种类型MySQL内部需要进行特殊处理,增加数据库处理记录的复杂性;同等条件下,表中有较多空字段的时候,数据库的处理性能会降低很多

c)null值需要更多的存储空,无论是表还是索引中每行中的null的列都需要额外的空间来标识

d)对null 的处理时候,只能采用is null或is not null,而不能采用=、in、<、<>、!=、not in这些操作符号。如:where name!=’shenjian’,如果存在name为null值的记录,查询结果就不会包含name为null值的记录

(15)禁止使用TEXT、BLOB类型

解读:会浪费更多的磁盘和内存空间,非必要的大量的大字段查询会淘汰掉热数据,导致内存命中率急剧降低,影响数据库性能

(16)禁止使用小数存储货币

解读:使用整数吧,小数容易导致钱对不上

(17)必须使用varchar(20)存储手机号

解读:

a)涉及到区号或者国家代号,可能出现+-()

b)手机号会去做数学运算么?

c)varchar可以支持模糊查询,例如:like“138%”

(18)禁止使用ENUM,可使用TINYINT代替

解读:

a)增加新的ENUM值要做DDL操作

b)ENUM的内部实际存储就是整数,你以为自己定义的是字符串?

五、索引设计规范

(19)单表索引建议控制在5个以内

(20)单索引字段数不允许超过5个

解读:字段超过5个时,实际已经起不到有效过滤数据的作用了

(21)禁止在更新十分频繁、区分度不高的属性上建立索引

解读:

a)更新会变更B+树,更新频繁的字段建立索引会大大降低数据库性能

b)“性别”这种区分度不大的属性,建立索引是没有什么意义的,不能有效过滤数据,性能与全表扫描类似

(22)建立组合索引,必须把区分度高的字段放在前面

解读:能够更加有效的过滤数据

六、SQL使用规范

(23)禁止使用SELECT *,只获取必要的字段,需要显示说明列属性

解读:

a)读取不需要的列会增加CPU、IO、NET消耗

b)不能有效的利用覆盖索引

c)使用SELECT *容易在增加或者删除字段后出现程序BUG

(24)禁止使用INSERT INTO t_xxx VALUES(xxx),必须显示指定插入的列属性

解读:容易在增加或者删除字段后出现程序BUG

(25)禁止使用属性隐式转换

解读:SELECT uid FROM t_user WHERE phone=13812345678 会导致全表扫描,而不能命中phone索引,猜猜为什么?(这个线上问题不止出现过一次)

(26)禁止在WHERE条件的属性上使用函数或者表达式

解读:SELECT uid FROM t_user WHERE from_unixtime(day)>=’2017-02-15′ 会导致全表扫描

正确的写法是:SELECT uid FROM t_user WHERE day>= unix_timestamp(‘2017-02-15 00:00:00’)

(27)禁止负向查询,以及%开头的模糊查询

解读:

a)负向查询条件:NOT、!=、<>、!<、!>、NOT IN、NOT LIKE等,会导致全表扫描

b)%开头的模糊查询,会导致全表扫描

(28)禁止大表使用JOIN查询,禁止大表使用子查询

解读:会产生临时表,消耗较多内存与CPU,极大影响数据库性能

(29)禁止使用OR条件,必须改为IN查询

解读:旧版本Mysql的OR查询是不能命中索引的,即使能命中索引,为何要让数据库耗费更多的CPU帮助实施查询优化呢?

(30)应用程序必须捕获SQL异常,并有相应处理

总结:大数据量高并发的互联网业务,极大影响数据库性能的都不让用,不让用哟。

补充:

军规:必须使用UTF8字符集

和DBA负责人确认后,纠正为“新库默认使用utf8mb4字符集”。

这点感谢网友的提醒,utf8mb4是utf8的超集,emoji表情以及部分不常见汉字在utf8下会表现为乱码,故需要升级至utf8mb4。

默认使用这个字符集的原因是:“标准,万国码,无需转码,无乱码风险”,并不“节省空间”。

一个潜在坑:阿里云上RDS服务如果要从utf8升级为utf8mb4,需要重启实例,所以58到家并没有把所有的数据库升级成这个字符集,而是“新库默认使用utf8mb4字符集”。

自搭的Mysql可以完成在线转换,而不需要重启数据库实例。

军规:数据表、数据字段必须加入中文注释

这一点应该没有疑问。

不过也有朋友提出,加入注释会方便黑客,建议“注释写在文档里,文档和数据库同步更新”。这个建议根据经验来说是不太靠谱的:

(1)不能怕bug就不写代码,怕黑客就不写注释,对吧?

(2)文档同步更新也不太现实,还是把注释写好,代码可读性做好更可行,互联网公司的文档管理?呆过互联网公司的同学估计都清楚。

军规:禁止使用存储过程、视图、触发器、Event

军规:禁止使用外键,如果有外键完整性约束,需要应用程序控制

军规:禁止大表使用JOIN查询,禁止大表使用子查询

很多网友提出,这些军规不合理,完全做到不可能。

如原文所述,58到家数据库30条军规的背景是“并发量大、数据量大的互联网业务”,这类业务架构设计的重点往往是吞吐量,性能优先(和钱相关的少部分业务是一致性优先),对数据库性能影响较大的数据库特性较少使用。这类场景的架构方向是“解放数据库CPU,把复杂逻辑计算放到服务层”,服务层具备更好的扩展性,容易实现“增机器就扩充性能”,数据库擅长存储与索引,勿让数据库背负过重的任务。

关于这个点,再有较真的柳岩小编就不回复了哈,任何事情都没有百分之百,但58到家的数据库使用确实没有存储过程、视图、触发器、外键、用户自定义函数,针对业务特性设计架构,等单库吞吐量到了几千上万,就明白这些军规的重要性啦。

军规:只允许使用内网域名,而不是ip连接数据库

这一点应该也没有疑问。

不只是数据库,缓存(memcache、redis)的连接,服务(service)的连接都必须使用内网域名,机器迁移/平滑升级/运维管理…太多太多的好处,如果朋友你还是采用ip直连的,赶紧升级到内网域名吧。

军规:禁止使用小数存储国币

有朋友问存储前乘以100,取出后除以100是否可行,个人建议“尽量少的使用除法”。

曾经踩过这样的坑,100元分3天摊销,每天摊销100/3元,结果得到3个33.33。后来实施对账系统,始终有几分钱对不齐,郁闷了很久(不是几分钱的事,是业务方质疑的眼神让研发很不爽),最后发现是除法惹的祸。

解决方案:使用“分”作为单位,这样数据库里就是整数了。

案例:SELECT uid FROM t_user WHERE phone=13812345678 会导致全表扫描,而不能命中phone索引

这个坑大家没踩过么?

phone是varchar类型,SQL语句带入的是整形,故不会命中索引,加个引号就好了:

SELECT uid FROM t_user WHERE phone=’13812345678’

军规:禁止使用负向查询NOT、!=、<>、!<、!>、NOT IN、NOT LIKE等,会导致全表扫描

此军规争议比较大,部分网友反馈不这么做很多业务实现不了,稍微解释一下:

一般来说,WHERE过滤条件不会只带这么一个“负向查询条件”,还会有其他过滤条件,举个例子:查询沈剑已完成订单之外的订单(好拗口):

SELECT oid FROM t_order WHERE uid=123 AND status != 1;

订单表5000w数据,但uid=123就会迅速的将数据量过滤到很少的级别(uid建立了索引),此时再接上一个负向的查询条件就无所谓了,扫描的行数本身就会很少。

但如果要查询所有已完成订单之外的订单:

SELECT oid FROM t_order WHERE status != 1;

这就挂了,立马CPU100%,status索引会失效,负向查询导致全表扫描。

末了,除了《58到家数据库30条军规解读》中提到的基础规范、命名规范、表设计规范、字段设计规范、索引设计规范、SQL使用规范,还有一个行为规范的军规:

(31)禁止使用应用程序配置文件内的帐号手工访问线上数据库

(32)禁止非DBA对线上数据库进行写操作,修改线上数据需要提交工单,由DBA执行,提交的SQL语句必须经过测试

(33)分配非DBA以只读帐号,必须通过VPN+跳板机访问授权的从库

(34)开发、测试、线上环境隔离

为什么要制定行为规范的军规呢,大伙的公司是不是有这样的情况:

任何研发、测试都有连接线上数据库的帐号?

是不是经常有这类误操作?

(1)本来只想update一条记录,where条件搞错,update了全部的记录

(2)本来只想delete几行记录,结果删多了,四下无人,再insert回去

(3)以为drop的是测试库,结果把线上库drop掉了

(4)以为操作的是分库x,结果SecureCRT开窗口太多,操作成了分库y

(5)写错配置文件,压力测试压到线上库了,生成了N多脏数据

错误的SQL 用法

1、LIMIT 语句

分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。

SELECT * 
FROM operation 
WHERE type = 'SQLStats' 
AND name = 'SlowLog' 
ORDER BY create_time 
LIMIT 1000, 10;

好吧,可能90%以上的 DBA 解决该问题就到此为止。但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?

要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。

在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL 重新设计如下:

SELECT * 
FROM operation 
WHERE type = 'SQLStats' 
AND name = 'SlowLog' 
AND create_time > '2017-03-16 14:00:00' 
ORDER BY create_time limit 10; 

在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。

2、隐式转换

SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:

mysql> explain extended SELECT * 
> FROM my_balance b 
> WHERE b.bpn = 14000000123 
> AND b.isverified IS NULL ;
mysql> show warnings;
| Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'  

其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。

上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。

3、关联更新、删除
虽然 MySQL5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 JOIN。

比如下面 UPDATE 语句,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。

UPDATE operation o
SET status = ‘applying’
WHERE o.id IN (SELECT id
FROM (SELECT o.id,
o.status
FROM operation o
WHERE o.group = 123
AND o.status NOT IN ( ‘done’ )
ORDER BY o.parent,
o.id
LIMIT 1) t);

重写为 JOIN 之后,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大加快,从7秒降低到2毫秒。

UPDATE operation o
JOIN (SELECT o.id,
o.status
FROM operation o
WHERE o.group = 123
AND o.status NOT IN ( ‘done’ )
ORDER BY o.parent,
o.id
LIMIT 1) t
ON o.id = t.id
SET status = ‘applying’

4、混合排序

MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。

SELECT *
FROM my_order o
INNER JOIN my_appraise a ON a.orderid = o.id
ORDER BY a.is_reply ASC,
a.appraise_time DESC
LIMIT 0, 20

由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。

SELECT *
FROM ((SELECT *
FROM my_order o
INNER JOIN my_appraise a
ON a.orderid = o.id
AND is_reply = 0
ORDER BY appraise_time DESC
LIMIT 0, 20)
UNION ALL
(SELECT *
FROM my_order o
INNER JOIN my_appraise a
ON a.orderid = o.id
AND is_reply = 1
ORDER BY appraise_time DESC
LIMIT 0, 20)) t
ORDER BY is_reply ASC,
appraisetime DESC
LIMIT 20;

5、EXISTS语句

MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句:

SELECT *
FROM my_neighbor n
LEFT JOIN my_neighbor_apply sra
ON n.id = sra.neighbor_id
AND sra.user_id = ‘xxx’
WHERE n.topic_status < 4
AND EXISTS(SELECT 1
FROM message_info m
WHERE n.id = m.neighbor_id
AND m.inuser = ‘xxx’)
AND n.topic_type <> 5

去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。

SELECT *
FROM my_neighbor n
INNER JOIN message_info m
ON n.id = m.neighbor_id
AND m.inuser = ‘xxx’
LEFT JOIN my_neighbor_apply sra
ON n.id = sra.neighbor_id
AND sra.user_id = ‘xxx’
WHERE n.topic_status < 4
AND n.topic_type <> 5

6、条件下推
外部查询条件不能够下推到复杂的视图或子查询的情况有:

聚合子查询;
含有 LIMIT 的子查询;
UNION 或 UNION ALL 子查询;
输出字段中的子查询;

如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:

SELECT *
FROM (SELECT target,
Count(*)
FROM operation
GROUP BY target) t
WHERE target = ‘rm-xxxx’

确定从语义上查询条件可以直接下推后,重写如下:

SELECT target,
Count(*)
FROM operation
WHERE target = ‘rm-xxxx’
GROUP BY target

7、提前缩小范围
先上初始 SQL 语句:

SELECT *
FROM my_order o
LEFT JOIN my_userinfo u
ON o.uid = u.uid
LEFT JOIN my_productinfo p
ON o.pid = p.pid
WHERE ( o.display = 0 )
AND ( o.ostaus = 1 )
ORDER BY o.selltime DESC
LIMIT 0, 15
该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。

SELECT *
FROM (
SELECT *
FROM my_order o
WHERE ( o.display = 0 )
AND ( o.ostaus = 1 )
ORDER BY o.selltime DESC
LIMIT 0, 15
) o
LEFT JOIN my_userinfo u
ON o.uid = u.uid
LEFT JOIN my_productinfo p
ON o.pid = p.pid
ORDER BY o.selltime DESC
limit 0, 15
再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。

8、中间结果集下推
再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

SELECT a.*,
c.allocated
FROM (
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = ‘1234567’
ORDER BY salecode limit 20) a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid
那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

SELECT a.*,
c.allocated
FROM (
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = ‘1234567’
ORDER BY salecode limit 20) a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources r,
(
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = ‘1234567’
ORDER BY salecode limit 20) a
WHERE r.resourcesid = a.resourcesid
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid

但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写:

WITH a AS
(
SELECT resourceid
FROM my_distribute d
WHERE isdelete = 0
AND cusmanagercode = ‘1234567’
ORDER BY salecode limit 20)
SELECT a.*,
c.allocated
FROM a
LEFT JOIN
(
SELECT resourcesid, sum(ifnull(allocation, 0) * 12345) allocated
FROM my_resources r,
a
WHERE r.resourcesid = a.resourcesid
GROUP BY resourcesid) c
ON a.resourceid = c.resourcesid

读写分离

也是目前常用的优化,从库读主库写,一般不要采用双主或多主引入很多复杂性,尽量采用文中的其他方案来提高性能。同时目前很多拆分的解决方案同时也兼顾考虑了读写分离。

NoSQL

在 MySQL 上做 Sharding 是一种戴着镣铐的跳舞,事实上很多大表本身对 MySQL 这种 RDBMS 的需求并不大,并不要求 ACID,可以考虑将这些表迁移到 NoSQL,彻底解决水平扩展问题,例如:

  • 日志类、监控类、统计类数据;
  • 非结构化或弱结构化数据;
  • 对事务要求不强,且无太多关联操作的数据

硬件升级

Scale up,这个不多说了,根据 MySQL 是 CPU 密集型还是 I/O 密集型,通过提升 CPU 和内存、使用 SSD,都能显著提升 MySQL 性能。